Kényszerű megoldásként alakult ki a sejtmag

Vágólapra másolva!
A közelmúltban új elmélet látott napvilágot a sejtmag eredetéről. Eszerint a genetikai állományt védő sejtalkotó megjelenése kényszerű megoldás volt az ősi sejtek világában bekövetkezett problémára.
Vágólapra másolva!

1. Gilbert, W. Why genes in pieces? Nature 271, 501 (1978) | Article | PubMed | ISI | ChemPort |
2. Doolittle, W. F. Genes in pieces: Were they ever together? Nature 272, 581-582 (1978) | Article | ISI |
3. Darnell, J. E. Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202, 1257-1260 (1978) | PubMed | ISI | ChemPort |
4. Doolittle, W. F. Revolutionary concepts in evolutionary cell biology. Trends Biochem. Sci. 5, 147-149 (1980)
5. Darnell, J. E. & Doolittle, W. F. Speculations on the early course of evolution. Proc. Natl Acad. Sci. USA 83, 1271-1275 (1986) | PubMed | ChemPort |
6. Cech, T. R. , Zaug, A. J. & Grabowski, P. J. In vitro splicing of the ribosomal-RNA precursor of Tetrahymena-involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487-496 (1981) | Article | PubMed | ISI | ChemPort |
7. Gilbert, W. The RNA world. Nature 319, 618 (1986) | Article | ISI |
8. Gilbert, W. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52, 901-905 (1987) | PubMed | ISI | ChemPort |
9. Stoltzfus, A. , Spencer, D. F. , Zuker, M. , Logsdon, J. M. & Doolittle, W. F. Testing the exon theory of genes: The evidence from protein structure. Science 265, 202-207 (1994) | PubMed | ISI | ChemPort |
10. Poole, A. , Jeffares, D. & Penny, D. Prokaryotes, the new kids on the block. Bioessays 21, 880-889 (1999) | Article | PubMed | ISI | ChemPort |
11. Forterre, P. & Philippe, H. Where is the root of the universal tree of life? Bioessays 21, 871-879 (1999) | Article | PubMed | ISI | ChemPort |
12. Jeffares, D. C. , Poole, A. M. & Penny, D. Relics from the RNA world. J. Mol. Evol. 46, 18-36 (1998) | Article | PubMed | ISI | ChemPort |
13. Cech, T. R. The generality of self-splicing RNA: Relationship to nuclear mRNA splicing. Cell 44, 207-210 (1986) | Article | PubMed | ISI | ChemPort |
14. Cavalier-Smith, T. Intron phylogeny: A new hypothesis. Trends Genet. 7, 145-148 (1991) | Article | PubMed | ChemPort |
15. Ferat, J.-L. & Michel, F. Group II self splicing introns in bacteria. Nature 364, 358-361 (1993) | Article | PubMed | ISI | ChemPort |
16. Roger, A. J. & Doolittle, W. F. Why introns-in-pieces? Nature 364, 289-290 (1993) | Article | PubMed | ISI | ChemPort |
17. Cousineau, B. , Lawrence, S. , Smith, D. & Belfort, M. Retrotransposition of a bacterial group II intron. Nature 404, 1018-1021 (2000); correction 414, 84 (2001) | Article | PubMed | ISI | ChemPort |
18. Lambowitz, A. M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1-35 (2004) | Article | PubMed | ISI | ChemPort |
19. Nixon, J. E. et al. A spliceosomal intron in Giardia lamblia. Proc. Natl Acad. Sci. USA 99, 3701-3705 (2002) | Article | PubMed | ChemPort |
20. Tovar, J. et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172-176 (2003) | Article | PubMed | ISI | ChemPort |
21. Simpson, A. G. , MacQuarrie, E. K. & Roger, A. J. Early origin of canonical introns. Nature 419, 270 (2002) | Article | PubMed | ISI | ChemPort |
22. Vanacova, S. , Yan, W. , Carlton, J. M. & Johnson, P. J. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 102, 4430-4435 (2005) | Article | PubMed | ChemPort |
23. Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618-622 (2004) | Article | PubMed | ISI | ChemPort |
24. van der Giezen, M. & Tovar, J. Degenerate mitochondria. EMBO Rep. 6, 525-530 (2005) | Article | PubMed | ISI | ChemPort |
25. Rogozin, I. B. , Wolf, Y. I. , Sorokin, A. V. , Mirkin, B. G. & Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512-1517 (2003) | Article | PubMed | ISI | ChemPort |
26. Roy, S. W. & Gilbert, W. Rates of intron loss and gain: Implications for early eukaryotic evolution. Proc. Natl Acad. Sci. USA 102, 5773-5778 (2005) | Article | PubMed | ChemPort |
27. Collins, L. & Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol. 22, 1053-1066 (2005) | PubMed | ISI | ChemPort |
28. Lynch, M. & Richardson, A. O. The evolution of spliceosomal introns. Curr. Opin. Genet. Dev. 12, 701-710 (2002) | Article | PubMed | ISI | ChemPort |
29. Mans, B. J. , Anantharaman, V. , Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612-1637 (2004) | PubMed | ISI |
30. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297-354 (2002) | PubMed | ISI | ChemPort |
31. Staub, E. , Fiziev, P. , Rosenthal, A. & Hinzmann, B. Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. Bioessays 26, 567-581 (2004) | Article | PubMed | ISI | ChemPort |
32. Doolittle, W. F. The origin of introns. Curr. Biol. 1, 145-146 (1991) | Article | PubMed | ChemPort |
33. von Dohlen, C. D. , Kohler, S. , Alsop, S. T. & McManus, W. R. Mealybug -proteobacterial symbionts contain -proteobacterial symbionts. Nature 412, 433-436 (2001) | Article | PubMed | ISI | ChemPort |
34. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152-155 (2004) | Article | PubMed | ISI | ChemPort |
35. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37-41 (1998) | Article | PubMed | ISI | ChemPort |
36. Vellai, T. , Takács, K. & Vida, G. A new aspect on the origin and evolution of eukaryotes. J. Mol. Evol. 46, 499-507 (1998) | Article | PubMed | ISI | ChemPort |
37. Finlay, B. J. & Fenchel, T. An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur. J. Protistol. 28, 127-137 (1992) | ISI |
38. Doolittle, W. F. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307-311 (1998) | Article | PubMed | ISI | ChemPort |
39. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401-1404 (2003) | Article | PubMed | ISI | ChemPort |
40. Khusial, P. , Plaag, R. & Zieve, G. W. LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem. Sci. 30, 522-528 (2005) | Article | PubMed | ISI | ChemPort |
41. Sorensen, M. A. , Kurland, C. G. & Pedersen, S. Codon usage determines translation rate in E. coli. J. Mol. Biol. 207, 365-377 (1989) | Article | PubMed | ISI | ChemPort |
42. Audibert, A. , Weil, D. & Dautry, F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol. 22, 6706-6718 (2002) | Article | PubMed | ISI | ChemPort |
43. Palmiter, R. D. Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell 4, 189-197 (1975) | Article | PubMed | ISI | ChemPort |
44. Levine, T. & Rabouille, C. Endoplasmic reticulum: One continuous network compartmentalized by extrinsic cues. Curr. Opin. Cell Biol. 17, 362-368 (2005) | Article | PubMed | ISI | ChemPort |
45. Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523-531 (2002) | Article | PubMed | ISI | ChemPort |
46. Luo, M. L. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644-647 (2001) | Article | PubMed | ISI | ChemPort |
47. Fasken, M. B. & Corbett, A. H. Process or perish: Quality control in mRNA biogenesis. Nature Struct. Mol. Biol. 6, 482-488 (2005)
48. Maquat, L. E. Nonsense mediated mRNA decay: Splicing, translation and mRNP dynamics. Nature Rev. Mol. Cell Biol. 5, 89-99 (2004) | Article |
49. Anantharaman, V. & Aravind, L. New connections in the prokaryotic toxin-antitoxin network: Relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol. 4, R81 (2003) | Article | PubMed |
50. Iborra, F. J. , Jackson, D. A. & Cook, P. R. Coupled transcription and translation within nuclei of mammalian cells. Science 293, 1139-1142 (2001) | Article | PubMed | ISI | ChemPort |
51. Dahlberg, J. E. & Lund, E. Does protein synthesis occur in the nucleus? Curr. Opin. Cell Biol. 16, 335-338 (2004) | Article | PubMed | ISI | ChemPort |
52. Cosson, B. & Philippe, M. Looking for nuclear translation using Xenopus oocytes. Biol. Cell. 95, 321-325 (2003) | Article | PubMed | ISI | ChemPort |
53. Heath, I. B. Variant mitoses in lower eukaryotes: Indicators of the evolution of mitosis? Int. Rev. Cytol. 64, 1-80 (1980) | ISI |
54. Gabaldó;n, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003)
55. Makarova, K. S. , Wolf, Y. I. , Mekhedov, S. L. , Mirkin, B. G. & Koonin, E. V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626-4638 (2005) | Article | PubMed | ISI | ChemPort |
56. Yang, S. , Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA 102, 373-378 (2005) | Article | PubMed | ChemPort |
57. Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399-451 (2005) | Article | PubMed | ISI |
Írásunk a Nature-ben megjelent cikk alapján készült - Nature 440, 41-45 (2 March 2006)